Threading the Eye of the Storm
Effective Security Resiliency with Hybrid Distributed Denial of Service (DDoS) Protection

Tim Nolen <tim.nolen@netscout.com>
Senior Solutions Architect, CISSP, GPEN

Roland Dobbins <roland.dobbins@netscout.com>
Principal Engineer, ASERT

Photo courtesy of NOAA ESRL
Agenda

Background & Context

Attack Surface & Methodologies

Resiliency by Design

DDoS Mitigation Techniques

Conclusion
Background & Context
Distributed Denial of Service (DDoS)

/ˈdēˌdôs/

An attempt to consume finite resources, exploit weaknesses in software design or implementation, or exploit lack of infrastructure capacity

Targets the availability and utility of computing and network resources

Attacks are almost always distributed for even more significant effect (i.e., DDoS)

The collateral damage caused by an attack can be as bad, if not worse, than the attack itself
Remember the CIA Triad?

Availability, availability, availability
Evolution of Threats and Exploits

- Password Guessing
- Self Replicating Code
- Exploiting Known Vulnerabilities
- Back Doors
- Stealth Diagnostics
- Sniffers
- Scanners
- Rootkits
- Hijacking Sessions
- Disabling Audits
- Booters/Stressers
- DDoS
- Botnets
- IoT Botnets

High Technical Knowledge Required
Low Sophistication of Tools
A (Highly) Condensed Timeline of DDoS Attacks

"There’s always going to be idiots that do bad things with information. These are growing pains on the Net. We’ll fix this and move on to the next one.“ – Emmanuel Goldstein, 1996

The Morris Worm
First Internet worm
November 2, 1988

ICMP (ping)
Popular DoS method
1992-1993

Eggdrop
IRC chat DoS
December 1993

Panix
First SYN flood, takes out ISP
September 6, 1996

Smurf
ICMP-based reflexive amplification attack
1997

fapi
CERT reports first DDoS botnet
1998

SQL Slammer
Cascading failure
2003

EHippies
Ideology driven DDoS, participatory botnet
1999

DDoS Extortion
Criminals extorting gambling/porn sites
1998

Mirai
Widely successful IoT botnet
2016

Terabit Era
1.7Tbps memcached reflection/amplification
March 5, 2018

Krebs on Security
620Gbit/s
September 20, 2016

Lazarus Bear Armada
DDoS extortion v2
2020
Trends as of 1H 2020

Key Findings

• Pandemic Profiteers
 – 929,000 DDoS Attacks in May alone
 – 4.83 Million DDoS Attacks 1H 2020

• Hidden Impact of DDoS Traffic
 – 15% Increase YoY
 – 25% Increase during Pandemic
 – DDoS Attack Coefficient (DAC)

• Complex Multivector Attacks
 – 2,851% Increase since 2017 in 15+ vectors
 – 43% Decrease in single-vector YoY

https://www.netscout.com/threatreport
Global DDoS Attack Trends

Largest attack in 1H 2020 occurred in APAC region.

Despite the single attack, most attacks are under 100 Gbps.

However, attacks combine increased speed, shorter duration, and more vectors.

Shorter duration + increased complexity = less time to respond to harder to mitigate attacks.
For More In-depth Coverage…

If you are looking for real-time data on global DDoS attacks, Cyber Threat Horizon is an invaluable (and free) tool.

https://www.netscout.com/horizon

https://www.netscout.com/threatreport
Attack Surface
Points of Impact

Service Provider/Internet Backbone:
Large pipes, highly connected infrastructure

Customer/Enterprise Edge:
Edge routers, Firewalls, Load Balancers, VPN concentrators

Datacenter:
Web Servers, App Servers, DB, SIP, etc.

Volumetric Attacks
Volumetric & State Exhaustion Attacks
Volumetric, State, & Application Layer Attacks
Volumetric Attacks

“The numbers all go to 11…” – Nigel Tufnel

Description

- Flood of traffic for one or more protocols and/or ports
- Can be designed to look like normal traffic — often consists of brute-force garbage packets
- Direct flooding or reflection/amplification attacks (more on this later)
- May be spoofed or non-spoofed

Common Vectors

- SYN-flood, RST-flood, UDP flood, non-initial fragments flood, GRE flood, ESP flood, UDP reflection/amplification, TCP reflection/amplification
Volumetric Attacks: Reflection/Amplification

Mirror, mirror in the net…

UDP/123 – UDP/80, ~468 bytes/packet
Non-Spoofed Sources: Multiple NTP Servers
Destination: 172.19.234.6
Reply: Up to 500 packets of monlist replies

UDP/80 – UDP/123
Spoofed Source: 172.19.234.6
Destinations: Multiple NTP servers
NTP query: monlist
DNS Reflection/Amplification Attack Methodology #1

UDP/32764 – UDP/53, ~70 bytes
Spoofed Source: 172.19.234.6
Destinations: Multiple Authoritative DNS servers
DNS query: ANY EXAMPLE.COM
DNS Reflection/Amplification Attack Methodology #1

UDP/53 – UDP/32764, ~4096 bytes, fragmented
Non-Spoofed Sources: Multiple Authoritative DNS Servers
Destination: 172.19.234.6
DNS Response: ANY RR for EXAMPLE.COM

Impact

Compromised server
Attack source

172.19.234.6/32
DNS Reflection/Amplification Attack Methodology #2

Internet-Accessible Servers, Routers, Home CPE devices, etc.

Authoritative DNS Servers for example.com

Abusable Recursive DNS Servers

Compromised server Attack source

172.19.234.6/32
DNS Reflection/Amplification Attack Methodology #2

UDP/1988 – UDP/53, ~70 bytes
Spoofed Source: 172.19.234.6
Destinations: Multiple Authoritative DNS servers
DNS query: TXT PGP.EXAMPLE.COM

Compromised server
Attack source

172.19.234.6/32

Authoritative DNS Servers for example.com

Abusable Recursive DNS Servers
DNS Reflection/Amplification Attack Methodology #2

Non-Spoofed Sources: Multiple Authoritative DNS Servers
Destination: Multiple Recursive DNS Servers

UDP/53 – UDP/50112, ~8192 bytes, fragmented

DNS Response: TXT RR for PGP.EXAMPLE.COM

Compromised server
Attack source

172.19.234.6/32
DNS Reflection/Amplification Attack Methodology #2

UDP/53 – UDP/1988, ~8192 bytes, fragmented
Non-Spoofed Sources: Multiple Recursive DNS Servers
Destination: 172.19.234.6
DNS Response: TXT RR for PGP.EXAMPLE.COM

Impact

Authority
DNS Servers for example.com

Abusable Recursive DNS Servers

Impact

Compromised server
Attack source

172.19.234.6/32
Effects of a Reflection/Amplification DDoS Attack on Network Capacity
Effects of a Reflection/Amplification DDoS Attack on Network Capacity
Effects of a Reflection/Amplification DDoS Attack on Network Capacity
Effects of a Reflection/Amplification DDoS Attack on Network Capacity

[Diagram showing network topology with nodes labeled IXP-W, IXP-E, Peer A, Peer B, Peer C, Peer D, NOC, and Mobile Infrastructure with Video, Music, Gaming etc.)]
Effects of a Reflection/Amplification DDoS Attack on Network Capacity
TCP State-Exhaustion Attacks

Why not use ALL the flags?

Description

- Overwhelm a certain aspect of the TCP connection process to keep the host from being able to respond to legitimate connections
- Generally floods at large packet rates
- Source addresses may be spoofed or non-spoofed

Common attack vectors

- TCP SYN, TCP FIN, TCP RST, TCP Flags

Final ACK not sent leaves TCP connection half open tying up Transmission Control Block (TCB)
Application-Layer Attacks

Description

Attacks designed to overwhelm components of specific applications
Commonly seen against HTTP, DNS and SIP in particular
May be stealthy by mixing with a much higher traffic volume on the same protocol/port

Common Attack Vectors

HTTP GET floods, HTTP/S TLS Negotiation floods, SIP Invite floods, DNS non-existent query attacks (‘DNS Water Torture’, et. al.)
Periodic Table of DDoS Attack Vectors

DNS and CLDAP topped the charts in 1H 2020 for the most UDP Reflection/Amplification attacks.

DNS, SIP, SSDP, and TFTP all surpass 6,000,000+ available reflectors/amplifiers available to attackers.
Top DDoS Attack Vectors

DNS Reflection/Amplification attacks took #1 spot in the 1H 2020, representing a 63% increase over 1H 2019. Additionally, non-reflective DNS attacks also made its way into the top ten for 1H 2020.

All TCP-based attacks increased in usage in 1H 2020.

Some TCP SYN, and ICMP attacks may be sympathetic to websites and services going offline from attacks.
DNS Query-Flooding

But I didn’t ask for that

Description

Attackers send valid but (usually) spoofed DNS request packets at a very high packet rate and from a very large group of source IP addresses.

Generally floods at large packet rates

Source addresses may be spoofed

Requested records may be large

Requested records may not exist

Common attack variants

Large-record queries, non-existent record queries (including ‘DNS Water Torture’), may be collateral impact of DNS reflection/amplification
UDP Reflection/Amplification Attacks

Connection? What connection…

Description

Attacker has the ability (often via booters/stressers) to spoof queries from the target’s IP address(es) — abusable services on the Internet act as reflectors/amplifiers, amplification factors of 1000:1 or more, in some cases.

Common reflection/amplification attack vectors

DNS, CLDAP, ntp, SSDP, SNMP, chargen, WS-DD, ARMS, VSE, mDNS, memcached, RIPv1, rpcbind, MSSQL, L2TP, CoAP, tftp, et. al.

2.3 Tbps CLDAP attack on AWS took place in February 2020
TCP Reflection/Amplification Attacks

Description
Attacker has the ability (often via booters/stressers) to spoof the IP address of the target, generates SYN-packets destined for TCP-based services in order to generate SYN/ACK-floods towards the target. Exploits the nature of the TCP 3-way handshake.

Common attack vectors
Web servers, application servers, anything TCP-based; attackers often leverage well-known cloud services to complicate mitigation efforts.
Resiliency by Design
Six Phases of Incident Response

Preparation
- Prep the Network
- Create Tools
- Test Tools
- Prep Procedures
- Train Team
- Practice

Detection
- How do you know about the attack?
- What tools can you use?
- What's your process for communication?

Classification
- What kind of attack is it?

Traceback
- Where is the attack coming from?
- Where and how is it affecting the network?
- What other current network problems are related?

Reaction
- What options do you have to remedy?
- Which option is the best under the circumstances?

Post Mortem
- What was done?
- Can anything be done to prevent it?
- How can it be less painful in the future?
Preparation

Develop and Deploy a Solid Security Foundation

Includes technical and non-technical components
Encompasses best practices
The hardest yet most important phase
Without adequate preparation, you are destined to fail
The midst of a large attack is not the time to be implementing foundational best practices and processes
Preparation

Know the enemy
- Understand what drives the miscreants
- Understand their techniques

Create the security team and plan
- Who handles security during an event; is it the security folks; the networking folks
- A good operational security professional needs to be a cross between the two: silos are useless

Harden the devices

Prepare the tools
- Network telemetry
- Reaction tools
Preparation

Establish upstream/downstream contacts
 Understand their capabilities
 Establish a relationship and contact procedures
 An attack is no time to figure out how to contact an upstream or understand how they could potentially assist you

Infrastructure security
 All of the techniques talked about today also assume that the infrastructure is available to route and forward packets!
Are You Pushing the Envelope?

Know Your Equipment and Infrastructure

Know the performance envelope of all your equipment (routers, switches, security devices, servers, etc.). You need to know what your equipment is really capable of doing.

Know the capabilities of your network. If possible, test it. Surprises are not amusing during a security incident.

Understand PPS vs. BPS, and how enabling various features impacts performance.
Are You Pushing the Envelope? Get Real!

Operator, “I tried to push my aircraft to 20,000 feet and it stalled.”
Vendor, “But the aircraft was only designed for a 15,000 foot ceiling.”
Operator, “I need it to go to 20,000 feet, so you should make that happen.”
Vendor, “But that is not going to happen; 15,000 feet is its ceiling. You knew that when you bought it.”
Operator, “Your equipment sucks if you cannot exceed you design specs.”
Detection, Classification, and Traceback

All of this assumes you can detect and understand the attack

Detection — understanding that something potentially bad is happening

Classification — understanding what’s happening, how much of it is happening, and how serious it is

Traceback — understanding where it’s happening on the network; where is the attack traffic ingressing & egressing the network?

Reacting to attacks depends, in a lot of ways, on how you detect the attacks

Time of reaction is often a critical factor

Once stateful devices fail, the restoration path is usually a hard reboot
Reaction

Many varying reaction mechanisms
No one tool or technique is applicable in all circumstances
 Think ‘toolkit’
 Automate where possible
 Don’t forget about the operational costs
It is critical to identify and classify an attack so you can choose the most appropriate mitigation tool
 Every problem does not call for a hammer solution, simplicity is key
 Some ‘solutions’ actually make the problem worse!
Postmortem - Analyzing What Just Happened

What Can Be Done to Build Resistance to the Attack Happening Again?

The step everyone forgets, or doesn’t make time to conduct
What can you do to make it faster, easier, less painful in the future?
Complete the loop!
Resiliency by Design
Multilayer DDoS Mitigation

Cloud Mitigation:
Carrier agnostic, works across multi-provider environments

Service Provider Mitigation:
Upstream transit providers

On-premise Mitigation
Can be standalone, or in conjunction with cloud or service provider upstream mitigation
Network Availability: Protect The Infrastructure

Security is the heart of internetworking’s future; we have moved from an Internet of implicit trust to an Internet of pervasive distrust. No packet can be trusted; all packets must earn that trust through a network device’s ability to inspect and enforce policy. Protecting the infrastructure is the most fundamental security requirement. Infrastructure protection should be included in all high availability designs. A secure infrastructure forms the foundation for continuous service delivery.
Network Infrastructure Security Best Current Practices (BCPs)

Many organizations publish guides to best practices around router/switch security

These include:

https://www.manrs.org/
http://www.first.org/resources/guides/
http://www.sans.org/resources/policies/

These guides do a good job of documenting best practices, especially in what we are referring to as traditional methods for router hardening

Network self-protection mechanisms must be implemented in order to withstand DDoS attacks.
Multi-Layer DDoS Protection

Defense is like an onion…
The Importance Of Detection And Classification

In order to operate and ensure availability of the network, we must have the ability to detect undesirable network traffic and to classify it appropriately.

We cannot contain/mitigate what we cannot detect!

- All the mitigation technology in the world isn’t helpful if we’ve no visibility into threats to network availability.

Detection and classification must be part of the network architecture and operational security practice.

- Otherwise, we’re left scrambling to figure out what’s happening—or even if anything is happening at all—instead of what we’re going to do about it.

In order to detect the abnormal, and possibly malicious, we have to know what’s normal—we must establish a baseline of network activity, traffic patterns, etc.

Classification is key—it provides the context for further action.

OPEX and CAPEX expended to gain network visibility pays big dividends - it is a force multiplier which allows overworked staff to plan, troubleshoot, and secure the network, and the hosts and networks which depend on the network.

Use flow telemetry (NetFlow, etc.) to detect/classify/traceback DDoS at scale across the network; use packet capture to see specifics, when necessary; use DNS to understand network behaviors, at scale.
What Is Meant by ‘Telemetry’?

Te·lem·e·try—n.

The science and technology of automatic measurement and transmission of data by wire, radio, or other means from remote sources, as from space vehicles, to receiving stations for recording and analysis.

Source *The American Heritage® Dictionary of the English Language, Fourth Edition*
Network Telemetry

Network telemetry offers extensive and useful detection capabilities. This telemetry is often coupled with dedicated analysis systems to collect, trend, and correlate observed activity.

There are several forms of telemetry available from routers, switches, and other network devices — flow telemetry (NetFlow, et. al.) & packet capture chief among them.

DNS is a rich source of behavioral telemetry, as well.

There are a number of open source and commercial tools available which greatly enhance the utility of network telemetry.

Getting started with network telemetry is both inexpensive and relatively easy.
Network Telemetry — Time Synchronization

When dealing with network telemetry, it is important that dates and times are both accurate and synchronized.

Enabling Network Time Protocol (NTP) is the common method of time synchronization — it is supported by routers, switches, firewalls, hosts, and other network-attached devices.

Without time synchronization, it’s very difficult to correlate different sources of telemetry.

More information on NTP can be found at http://www.ntp.org
Network Telemetry — OOB Management

In-Band access to network infrastructure, hosts, etc., works very well — until there’s a problem on the network.

In order to maximize reachability of and control over the network even during disruptive events, it is necessary to build an isolated Out-of-Band (OOB) management network (sometimes called a Data Communications Network, or DCN).

Many devices such as routers and switches have serial console ports; others have Ethernet management interfaces.

Transmitting network telemetry over the OOB network minimizes the chance for disruption of the very information which gives us visibility into the network.
Network Telemetry — Antispoofing/Source Address Validation (SAV)

There are many mechanisms available in modern network infrastructure devices to disallow spoofed traffic from transiting the network - Unicast Reverse Path Forward (uRPF), DHCP Snooping with IP Source Guard, Cable IP Source Verify, etc.

Spoofed traffic is by definition invalid traffic - there is no reason to allow spoofed traffic to ingress and transit your network. Disallowing spoofed traffic is a basic step in improving network resiliency.

By eliminating spoofed traffic, we remove clutter from the ‘data horizon’ generated by analyzing network telemetry.

This greatly reduces the traceback problem - with antispoofing measures in place, we know that purported source IPs originating from network edges under our control are valid, and we eliminate falsely-sourced traffic from the peering edge.
DDoS Mitigation Techniques
DDoS Reaction/Mitigation Mechanisms

ACLs
- Drops traffic with layer-3/-4 granularity
- Can be difficult to deploy manually during an attack (see flowspec below)

Blackhole (null-routing using BGP)
- Drops traffic with layer-3 granularity on routers, layer-3 switches
- Uses a BGP announcement with a new BGP nex-thop to redirect the traffic
- D/RTBH drops traffic to destination (completing the attack!), S/RTBH can drop based on source IPs

Flow Specification (flowspec)
- Uses a multi-protocol BGP (mBGP) announcement to push ACLs to flowspec-enabled routers
- Drop or rate-limit traffic that matches a layer-3/-4 flowspec filter (an ACL)

Intelligent DDoS Mitigation System (IDMS)
- Diverts traffic destined for the target into a mitigation center via BGP announcements
- Attack traffic dropped, legitimate traffic re-injected via GRE, VRF, direct mitigation peering
- Can mitigate layer-3 – layer-7 attacks
- Provides detailed mitigation feedback & statistics
- Horizontally scalable in mitigation clusters, multiple BGP-anycasted clusters
Mitigation Mechanism: IDMS

Intelligent DDoS Mitigation System

Surgically drop traffic
 Use various countermeasures to target and remove as much of the attack traffic as possible
 Allow the network to continue operating

Deployment methods
 Inline (mainly on-prem)
 On-demand BGP diversion and re-injection
 ‘Nailed up’ BGP diversion and re-injection
 DNS diversion (often used whilst provisioning BGP)

Apply various countermeasures (defense mechanisms) to target and remove attack traffic to allow servers/services/applications to continue operating, even in the face of attack
 Different countermeasures are designed to protect different types of services, mitigate different types of attacks
 IDMS countermeasures provide defense in depth mitigation
 The main organizing principle of countermeasure provisioning is “What is being protected?”
 Attack vector-specific countermeasures may also be employed during a mitigation
On-Premise IDMS Deployment
Upstream IDMS Deployment (Mitigation Center)
Hybrid IDMS Deployment
Initial DDoS Attack
On-Premise IDMS Successfully Mitigates
Outbound Server Responses to Legitimate Traffic Continue
Traffic to Non-Targeted Servers Unimpeded
Attack Traffic Increases, On-Premise Mitigation Capacity Exceeded
Attack Traffic Increases, On-Premise Mitigation Capacity Exceeded
IDMS Signals Upstream Mitigation Provider
Upstream Mitigation Diverts Traffic to Targeted Servers, Drops Attack Traffic, Re-Injects Good Traffic
Server Responses to Legitimate Requests Follow ‘Natural’ BGP Routing
Traffic Directed Towards Non-Targeted Servers Not Diverted
Hybrid Deployment Model with Cloud Mitigation Provider
DDoS Attack Traffic Fills Transit Links of Targeted Network
On-Premise IDMS Signals Cloud Mitigation Provider to Initiate Mitigation
Cloud Mitigation Provider Initiates Diversion, Drops Attack Traffic, Re-injects Legitimate Traffic
Server Responses to Legitimate Requests Follow ‘Natural’ BGP Routing
Inbound Traffic to Non-Targeted Server Farms Not Diverted, Follows ’Natural’ BGP Routing
Hybrid Deployment with Multiple Upstream Transit Providers
Upstream Deployment with On-Premise Detection/Classification
On-Premise Detection Triggers Upstream Mitigation
Upstream Detection/Classification/Traceback & Mitigation, No On-Premise Components
Conclusions & Next Steps
Common Perception of Internet Security Posture
Actual State of Internet Security Posture
Implications & Consequences

Dear Valued Customers:
Chicken Wings
& Cheesy Crust
Are Currently Out of Stock
Due to a Recent Cyberattack
Which Has Affected Imports
We Apologize
For The Inconvenience
Network Operators

Their own first, best customers

Network operators must ensure that their own network infrastructure, DNS, servers/services/applications can maintain availability in the face of attack.

This is vital – end-user/-customer services depend upon the availability of the network operator’s infrastructure and properties.

Ensure that all best current practices (BCPs) are implemented for network infrastructure, servers/services/applications, DNS, etc.

Ensure source-address validation (SAV) for ingress and egress traffic is performed at network edges in a situationally-appropriate manner.

Make use of flow telemetry, packet capture, & DNS for detection/classification/traceback.

Implement S/RTBH, flowspec, and IDMS in order to mitigate DDoS attacks at scale.

Participate in the global operational security community; build/maintain relationships with peers, customers, vendors.
You Must Defend Yourselves So That You Can Defend Your Users & Customers!

KEEP CALM and place your OXYGEN MASK on first!
And, Most Importantly of All . . .
For More In-depth Coverage...

NETSCOUT 1H2020 Threat Intelligence Report:
https://www.netscout.com/threatreport

NETSCOUT ASERT blog:
https://www.netscout.com/asert

Roland Dobbins’ public presentation folder:
https://app.box.com/s/4h2l6f4m8is6jnwk28cg

Effective DDoS Protection at Scale:
Best Practices and a Reference Architecture for Service Providers
Thank You!

Tim Nolen <tim.nolen@netscout.com>
Senior Solutions Architect, CISSP, GPEN

Roland Dobbins <roland.dobbins@netscout.com>
Principal Engineer, ASERT

netscout.com
Guardians of the Connected World